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1 Introduction

This documentation is part of an effort to give OpenFOAM® users curated and peer-reviewed
tutorials of high quality to various solvers of the OpenFOAM® toolbox. This walk-through is suitable
for users new to OpenFOAM® but has some prerequisites:

� Good knowledge of Linux/UNIX environments and commands

� User is familiar with a typical Bourne-Shell like BASH

� Knowledge of an effective text editor

� Some background in numerics and the theory behind CFD

� A working installation of OpenFOAM®

Note: The installation process of OpenFOAM® for your operating system of choice is not
covered in this tutorial. Also note that mesh generation is not part of this tutorial. A working mesh is
included in the case-files though.

In this tutorial we would like to give a concise introduction to simpleFoam, a solver for steady-state
simulation of incompressible laminar or turbulent flow. Here we will stick to the case of laminar flow.
No turbulence models will be employed in the simulation. We chose to simulate part of a classic
experiment by G. I. Taylor published in 1923 titled “Stability of a Viscous Liquid contained between
Two Rotating Cylinders“. In a closed geometry interesting secondary flow patterns (and temporal
instabilities not covered in this tutorial) evolve in the gap between concentric, roating cylinders. This
tutorial by no means gives a complete and perfectly correct numerical description and solution to
phenomena discovered by Taylor almost 100 years ago. Also meshing (generation of the finite volume
grid) is not covered in this tutorial. The tutorial is designed to show the OpenFOAM®-novice handy
ways to run simulations in serial and parallel, monitor residuals, quickly modify (linearly transform)
geometries and boundary conditions and do the post-processing and visualisation of results.

2 Case, Geometry and Mesh

If you unpack the .tar.gz archive and have a look around you will find following files and directories:

0: p U

0_template: p U

constant: polyMesh/ polyMesh_originalSize/ transportProperties turbulenceProperties

system: controlDict decomposeParDict fvSchemes fvSolution

When working with OpenFOAM® like with every versatile system there is no one correct way to
get the work done. Every user has a different style, every problem requires different strategies. Much
of what follows comes from experience and previous failiures of the author. Take it with a grain of
salt.
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First things first: what is a case? A case is the combination of geometry definition (the finite
volume mesh), configuration files (called dictionaries in OpenFOAM® language), definition of
boundary conditions and initial conditions, custom function and results all structured in many files
and directories. The 0-directory contains the initial- and boundary-conditions. The (initial) mesh is in
constant/polyMesh. Most config files are in system/. Material and turbulence properties are in
constant/. If you are interested you can go deeper into the subdirectories and see how the data is
structured further. This tutorial provides extra backup directories for 0 and constant/polyMesh in
case something happens (and it will) to important original data.

The best way to learn cooking is to cook. In this manner we’ll dive right into it. Let’s have a look
at our geometry using Paraview, a post-processor and data visualiser. Paraview is a complex software
of its own and we will just see the tip of the iceberg here. Whether you installed Paraview bundled
with OpenFOAM® or downloaded the lastest version from somewhere else does not matter so much,
the functionality is basically the same. The screenshots presented here are still from Paraview-4.1.0.
Note: your GUI might vary a little. First: get into the taylor couete directory and create a file:

$ cd taylor_couette

$ touch .foam

Type “.foam“ into the “File name:“ text-box in Paraview, click “OK“, select “Reconstructed Case“
from the “Case Type“ drop-down menu and click “Apply“.

Next you should see a blue circle on a gray backdrop in “Layout #1“. Next: select “Solid Color“ and
you should see a shaded gray ring like this after rotating the view direction:
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Rotate the geometry using LMB (Left Mouse Button), zoom with RMB (Right Mouse Button), move
with MMB (Middle Mouse Button). If you select “Surface With Edges“ from the pull down menu
“Surface“ the surface mesh will be shown. CTRL-Space will produce a pop-up window. Type S L
and select the “Slice“ filter (also found in the manu bar at Filters → Common → Slice). Select “Y
Normal“ and “Apply“ and have a look at the mesh in detail. Play around in the pipeline browser and
turn on and off visibility with the eye symbol. You now have an overview what the geometry and
mesh look like. The field variables p and U are already found by Paraview and read from 0/, the mesh
is read from constant/polyMesh. The combination of both is needed to post-process any results. If
you lose or destroy your mesh data the field variables themselves are worthless because they contain
no geometry information. Bear in mind that field variables (a long list of doubles in ASCII or binary
form) and mesh correspond to each other!

3 Boundary conditions

“0“ is the first and initial so called time-directory. The semantics of storing field data for steady
and unsteady (transient) simulations in OpenFOAM® is the same. They are stored in numbered
directories where the number is simply advanced every iteration and every processing step by the
setting “deltaT“ found in system/controlDict. Just by looking at numbered directories in an
OpenFOAM®-case there is no way to find out wether the simulation was transient or steady-state as
it depends solely on the used solver or tool what those numbers mean.

Have a look at system/controlDict. deltaT is defined as 1. This is standard for steady-state
solvers. In our tutorial the numbers of the directories containing the saved field variables (here: pressure
p and velocity U) will denote the iteration number. In our case the definitions in system/controlDict

are:

application simpleFoam;

startFrom latestTime;

stopAt endTime;

endTime 25000;

deltaT 1;

writeControl runTime;

writeInterval 400;

purgeWrite 0;

writeFormat ascii;

writePrecision 9;

writeCompression yes;

timeFormat general;

timePrecision 9;

runTimeModifiable no;

The settings are described in detail in the official OpenFOAM®-documentation. To cut it short:
The solver will write out field variables to disk every 400 iterations and also if the convergence criteria
are met (in this case the solvers also stops iterating). At most 25000 iterations will be calculated.
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Have a look at the boundary conditions for the velocity field located in 0/U. The interesting part
outside the C++-style comments and the header is shown here:

boundaryField

{

"inner_wall"

{

type rotatingWallVelocity;

origin ( 0 0 0 );

axis ( 0 0 1 );

omega 4; // rad/s

}

"outer_wall" {type fixedValue; value uniform ( 0 0 0 );}

"top" {type slip;}

"bottom" {type slip;}

}

In this file all the boundaries defined in constant/polyMesh need to be adressed. Otherwise
OpenFOAM® will throw an error. (POSIX.2 regular expressions are supported. You could leave out
the line containing “outer wall“ and e.g. substitute “inner wall“ with “*. wall“. This is valid input for
OpenFOAM®.) In 0/p and 0/U two important types of boundary conditions are present “fixedValue“
(Dirichlet type) and “zeroGradient“ (von Neumann type). “rotatingWallVelocity“ is a calculated type
where the actual wall velocity depends on the geometry (radial distance) and angular velocity (ω =
omega) defined in rad s-1. OpenFOAM® adheres strictly to SI-units and does run-time unit checking
(see official documentation). By changing the entries in 0/p and 0/U boundary conditions and initial
conditions are modified.

4 Solution

Let’s run our first simulation (assuming OpenFOAM® is installed in the users home directory) and
watch the solver’s output:

$ . ~/OpenFOAM/OpenFOAM-v1812/etc/bashrc

$ cd taylor_couette

$ simpleFoam > log &

$ tail -f log

The first command sources the OpenFOAM® environment. You don’t have execute this every
time if it is already part of your users $HOME/.bashrc. Without this command OpenFOAM® binaries
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and libraries are invisible to the active shell. Lot’s of shell variables essential to OpenFOAM® are set.
Other software is not necessarily compatible to the OpenFOAM® -environment. The user can unset
the variables with the “wmUnset“ command (uppercase U!). While the solver keeps running in the
background we will present a very simple example to monitor the residuals using foamLog, a utility
that creates X-Y-Files readable by e.g. gnuplot. foamLog informs you which data is extracted from
the logfile.

$ . ~/OpenFOAM/OpenFOAM-v1812/etc/bashrc

After the simulation run finishes you can use the foamLog utility to parse the log file an generate
appropriate files for input into Gnuplot like this:

$ foamLog log

$ wmUnset

$ cd logs

$ gnuplot

gnuplot> plot ’UzFinalRes_0’ with lines

By the end of the simulation run the initial residuals should have fallen (in the best case) by
several orders of magnitude. The simulation is now complete. Notice two new directories containing
results.

$ cd ..

$ ls -F

0/ _0_org/ 1200/ 1246/ 400/ 800/ constant/ log system/

5 Post processing and visualisation

The description of the fun part is short: get back to Paraview and hit “Refresh“ in the Properties
Window. The folder structure will be re-read. If you point on the button for the last time-step you will
notice the tool-tip says “Last Frame (1246)“. Click on the button and view the results in Paraview.
Notice that “Time“ gives 1246 which is the iteration number. For a transient simulation it will actually
be the simulated time.
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The 3D-data of p(scalars) and U(vectors) can readily be selected from the coloring drop-down menu.
For swirling flows vorticity can be relevant. The solver itself did not produce this information, but it
can be optained by a built-in post-processing tool.

$ postProcess -func vorticity

Notice how vorticity is calculated for each time-step (here it means iteration count). If you
only want it to be calculated for the latest time-directory add the option “-time latestTime“ to the
command. Notice the output of the postProcess tool.

6 Parallelisation

This is all swell but we want the results quicker. Let’s speed things up by running the solver in parallel.
OpenFOAM® uses a method called domain-decomposition where sub-parts of the mesh and variables
are run on seperate CPUs (processors, cores, threads, . . . ) communicating via MPI. To be able to
run in parallel the domain needs to be split up into connected chunks (one for each processor) first.
This is done using decomposePar which looks in system/decomposeParDict for its settings:

numberOfSubdomains 8;

//method scotch;

method hierarchical;

hierarchicalCoeffs

{

n ( 2 2 2 );

delta 0.001;

order xyz;
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}

manualCoeffs

{

dataFile "";

}

//distributed no;

//roots ( );

Here we are decomposing into 8 sub-domains with an algorithm called “hierarchical“. The part
hierarchicalCoeffs{. . . } is called a sub-dictionary. The configuration here says: split up the geometry
in 8 parts, 2 in x-direction, 2 in y-direction and 2 in z-direction, first split in x, then in y and last
in z direction, allow a maximum relative tolerance in cell distribution of 0.001. Other methods and
parameters are commented out. Adapt the count of sub-domains to number of available CPU-cores,
change n accordingly and run the simulation, e.g. 4x parallel, like this:

$ . ~/OpenFOAM/OpenFOAM-v1812/etc/bashrc

$ decomposePar

$ mpirun -np 4 simpleFoam -parallel > log.parallel &

$ foamLog log.parallel

$ wmUnset

$ gnuplot

gnuplot> plot ’UzFinalRes_0’ with lines

Don’t forget to run foamLog at the end of the simulation to update the X-Y-files. How much
speed-up you can gain by running in parallel depends very much on the size of the mesh. If you fall
below 20 000 cells per CPU-core the communication overheads between the sub-domains usually start
to eat up performance gains by a higher core count. YMMV, so try to find the limits of your system
by doing benchmarks. Note : Parallel runs of OpenFOAM will yield slightly different results than
serial runs due to rounding errors.

For parallel runs post-processing in Paraview requires to set the case type to “Decomposed Case“.
A different method, sometimes more suitable, is to reconstruct the fields which have been split up
into the processor directories and convert them into native VTK-format efficiently read by Paraview.
The VTK-files in the VTK-directory can be directly opened in Paraview. Give it a try. . .

$ . ~/OpenFOAM/OpenFOAM-v1812/etc/bashrc

$ reconstructPar

$ foamToVTK
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7 Comparison of CFD-results with theory and experiments

By using a “Glyph“ filter on a slice 2D arrows are overlayed clearly visualising the vortex cores. The
“Ruler“ filter in Paraview (hit CTRL-space) can measure the distance of one vortex-center to another.
The fit with experimental data is not bad at all. . .

8 Excercises

� Try different visualisation filters in Paraview.

� Save a state file in Paraview and come back in a fresh session where you left off by loading the
state-file.

� What is the limit for n when decomposing? How many cores before there is no more gain in
speed?

� Try different n for decomposition.

� Are single- and multi-core results identical? Have a look at the log files. Have a look at the
time-directories and data. Can you open them in an editor?

� Change the boundary conditions for angular velocity. Does the vortex spacing change if the
outer cylinder rotates at half the angular speed of the inner cylinder? Compare results.

� Reduce the height of the rotating, concentric cylinders by using the transformPoints command in

the taylor couette directory like this transformPoints -scale “( 1 1 0.5 )“ . How do the results

compare?

� Get back the original mesh by deleting constant/polyMesh and recursively copying
constant/polyMesh originalSize to constant/polyMesh.
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