uhiSolver
Developing an effective transient Multi-Physics solver for prediction and mitigation of Urban Heat Island dynamics

József Nagy, András Horváth, Markus Luisser
Motivation

- Temperature significantly higher in summer nights
 - in (large) cities
 - compared to the countryside
- The urban heat island (UHI), [...] is often regarded as the most well documented example of anthropogenic climate modification [1]
- People living in cities are directly affected and suffering from UHI effects
 - 2005: 50% of the population
 - 2050: 66% (estimated)

Motivation

Night time IR image from Vienna, Austria

Temperatures measured on a typical summer day in Vienna

1950: 8.9°C
2017: 11.6°C

Yearly average temperature in Vienna

source: zamg.at
Motivation

- Generalisation and quantification of UHI effects is a difficult problem.
- Every city, every neighbourhood is a unique “prototype” with specific balances and boundary conditions.
- Small changes in local temperature, humidity and air movement can feel very different.
- Goal:
 - CFD tool based on OpenFOAM
 - Prediction of PET (Physically Equivalent Temperature)
 - Potential mitigation of UHIs via numerical, comparative experiments
Motivation

● Goal:
 ○ CFD tool based on OpenFOAM
 ○ prediction of PET (Physically Equivalent Temperature)
 ○ potential mitigation of UHIs via numerical, comparative experiments

● Additionally implemented models in OpenFOAM (v1712)
 ○ Temperature dependant relative humidity and advection of water (humidity)
 ○ Evaporative cooling effects
 ○ Evaporative mass fluxes of humidity induced by vegetation and water bodies
Theoretical description - fluid

- Conservation of mass
 - Continuity equation

\[\frac{\partial \rho}{\partial t} + \nabla \cdot \rho \mathbf{u} = 0 \]
Theoretical description - fluid

- Conservation of mass
 - Continuity equation

- Conservation of momentum
 - Navier-Stokes equations
 - Buoyancy

\[
\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = 0
\]

\[
\frac{\partial \rho \mathbf{u}}{\partial t} + \nabla \cdot (\rho \mathbf{u} \mathbf{u}) = -\nabla p + \nabla \cdot (2\mathbf{S}) + F_{\text{buoyant}} + F_T
\]
Theoretical description - fluid

- Conservation of mass
 - Continuity equation
- Conservation of momentum
 - Navier-Stokes equations
 - buoyancy
- Conservation of energy
 - enthalpy
 - kinetic energy
 - buoyancy
 - radiation
 - phase change

\[
\begin{align*}
\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) &= 0 \\
\frac{\partial \rho \mathbf{u}}{\partial t} + \nabla \cdot (\rho \mathbf{u} \mathbf{u}) &= -\nabla p + \nabla \cdot (2\mathbf{S}) + F_{\text{buoyant}} + F_T \\
\frac{\partial \rho h}{\partial t} + \nabla \cdot (\rho \mathbf{u} h) + \frac{\partial \rho \left(\frac{u^2}{2} \right)}{\partial t} + \nabla \cdot \left(\frac{u^2}{2} \right) &= -p \nabla \cdot \mathbf{u} + \nabla \cdot \left(\frac{k}{c_v} \right) \nabla h + \rho \mathbf{u} \cdot \mathbf{g} + H_{\text{turb}} + \dot{Q}_{\text{rad}} + \dot{Q}_{\text{evap}}
\end{align*}
\]
Theoretical description - solid

- Heat conduction in solid
- Heat transfer between fluid and solid
 - shared boundary

\[
\frac{\partial \rho h}{\partial t} = \Delta \alpha h
\]
Evaporation, condensation

- Definition of mass loading X
 - in kg water vapor per kg
- Calculation of saturation pressure
 - Antoine equation
 - $p_s = p_s(T)$
- Relative humidity with saturation pressure
 - $\text{rh} = \text{rh}(p, p_s(T), X)$
- Compressibility
 - $\psi_i = \psi_i(X, T)$

source: Acker S.: “Raumlufttechnik - Das h.x Diagramm nach Mollier”
Evaporation, condensation

- Relative humidity with saturation pressure
 - $\text{rh} = \text{rh}(p, \text{ps}(T), X)$
- $\text{rh} > 1$
 - condensation of liquid volume fraction
- $\text{rh} < 1$
 - no condensed liquid present - nothing
 - condensed liquid present - evaporation

source: Acker S.: “Raumlufttechnik - Das h,x Diagramm nach Mollier”
Validation of phase change

- „Weighing“ of water condensation and evaporation on a smooth metal surface
- Planning, designing of phase change experiment at Vienna University of Technology
- Defined conditions of (T,U,rh)
 - defined flow speeds
 - defined temperature
 - defined humidity (mass loading)
- Comparison to transient simulation
Validation of phase change
Validation of phase change
Validation of phase change
Validation of phase change
Validation of air flow

- Simulation of urban air flow patterns around free standing model buildings
- Down-scaled wind tunnel experiments of a free standing building block with Re=12500 LES (Smago) turbulence modeling [2]
- Building model height $h=0.05$ m

Validation of air flow

- Simulation of urban air flow patterns around free standing model buildings
- Up-scaled wind tunnel experiments of a free standing building block with Re=2500000 RAS (kEpsilon) turbulence modeling [2]
- Building model height h=10 m

Application - Kabelwerk

- „Kabelwerk“ Project in Vienna, Austria
- Trees, water fountain, pool, varying level of shade, etc. included in simulation.
Application - Kabelwerk

- Wind inlet velocity profile
- Temperature profile
- Loading (i.e. humidity) profile
- Sun (solar angles)
Application - Kabelwerk

- Comparison of two full simulation runs (72h real time, 72h wall clock time).
 - full evaporation modeling (A)
 - without evapotranspiration and evaporation from water bodys (B)
Application - Kabelwerk

- Simulation of
 - vegetation
 - green roofs

roof level

street level

Humidity

Temperature

Evaporation

- 55% relative humidity
- 45% relative humidity

- Concrete roof
- Green roof
- Wind direction
- Sun direction

- ≥28°C air temperature
- ≤28°C air temperature
- ≥30°C air temperature
- ≤25°C air temperature

- No evaporation
Localized evaporation cooling effects

Temperature drop depends on
- wind direction and speed
- radiation at night
- sun path and shade

"Memory effect" of building's heat latency is clearly shown by daily increasing temperature

Complex and coupled effects of flow, sun/shade, and evaporation are seen in the temperature samples

Application - Kabelwerk
Summary

- Model for simulation of Urban Heat Islands
- Energy balances (conduction, advection, radiation, humidity, evaporation)
 - implemented and tested in a realistic model
- UHI “memory effect” on night time temperatures
- Solver runs in real-time for smallish geometries (a few buildings) on affordable hardware
- Scale-up and performance improvements in EU financed POP-COE project
 - 300x300m case with detailed building geometry in real time on HPC
Outlook

- Validation of evapotranspiration models and tuning of parameters
 - Introduction of different plant types and modeling of environmental interaction
- Creating a building database
 - average values of latent heat
 - albedo of wall materials
 - for different types of buildings (old, new, low energy)
 - creating a database for soil material properties (e.g. concrete vs. soil)
- Goal: a tool usable by engineers to do comparative simulations
 - for UHI mitigation in the planning phase of large master plans
 - compare PETs for different scenarios
 - Green roofs and green walls
 - Tree positions, parks, hedges, grass
 - water surfaces
Contact

DI Andras Horvath
andras.horvath@rheologic.net
www.rheologic.net